
M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 1/9

Université / Département d'Informatique — Master 1 IA/RSD

Évaluation SQL (3/2025) — Synthèse sur les Triggers

CORRIGE TYPE

Contexte : Application « QuickFood » — Livraison de repas

QuickFood est une application de livraison de repas à domicile. La base gère les clients, les livreurs et les commandes.

Schéma de la base de données

CREATE TABLE Client (

 id_client INTEGER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,

 nom VARCHAR(50) NOT NULL,

 telephone VARCHAR(15) UNIQUE,

 adresse VARCHAR(200),

 date_inscription DATE DEFAULT CURRENT_DATE,

 nb_commandes INTEGER DEFAULT 0,

 statut VARCHAR(15) DEFAULT 'NOUVEAU' -- NOUVEAU, REGULIER, VIP

);

CREATE TABLE Livreur (

 id_livreur INTEGER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,

 nom VARCHAR(50) NOT NULL,

 telephone VARCHAR(15) UNIQUE,

 disponible BOOLEAN DEFAULT TRUE,

 nb_livraisons INTEGER DEFAULT 0,

 note_moyenne DECIMAL(3,2) DEFAULT 0 -- Note sur 5

);

CREATE TABLE Commande (

 id_commande INTEGER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,

 id_client INTEGER REFERENCES Client(id_client),

 id_livreur INTEGER REFERENCES Livreur(id_livreur),

 date_commande TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 montant DECIMAL(8,2) NOT NULL,

 statut VARCHAR(15) DEFAULT 'EN_ATTENTE',

-- EN_ATTENTE, EN_COURS, LIVREE, ANNULEE

 note_client INTEGER CHECK (note_client BETWEEN 1 AND 5)

);

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 2/9

Règles métier à automatiser :

1. Le montant minimum d'une commande est 500 DA

2. On ne peut commander qu'auprès d'un livreur disponible

3. Un client devient REGULIER après 5 commandes, VIP après 20 commandes

4. Un livreur devient indisponible quand il prend une commande

5. La note moyenne du livreur est recalculée après chaque livraison notée

6. Un client VIP ne peut pas être supprimé

Aide-mémoire

BEFORE AFTER

• Peut modifier NEW

• RETURN NEW → valide

• RETURN NULL → annule

• NEW en lecture seule

• Idéal pour cascade/log

• RETURN ignoré

INSERT UPDATE DELETE

NEW ✓ OLD ✗ NEW ✓ OLD ✓ NEW ✗ OLD ✓

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 3/9

Partie 1 : QCM (20 questions × 1 pt = 20 pts)

Cochez la bonne réponse pour chaque question.

1. Qu'est-ce qu'un trigger en SQL ?

☐ A) Une requête SELECT automatique

 ☐ B) Un programme qui s'exécute automatiquement sur un événement

☐ C) Une contrainte d'intégrité
☐ D) Un index sur une table

2. Quels événements peuvent déclencher un trigger ?

☐ A) SELECT, INSERT, UPDATE

 ☐ B) INSERT, UPDATE, DELETE

☐ C) CREATE, ALTER, DROP
☐ D) BEGIN, COMMIT, ROLLBACK

3. Quelle est la différence principale entre BEFORE et AFTER ?

☐ A) BEFORE est plus rapide

 ☐ B) BEFORE permet de modifier NEW, AFTER non

☐ C) AFTER permet de modifier OLD
☐ D) Il n'y a aucune différence

4. Que se passe-t-il si un trigger BEFORE INSERT retourne NULL ?

☐ A) Une erreur est levée

 ☐ B) L'insertion est annulée silencieusement

☐ C) NULL est inséré dans toutes les colonnes
☐ D) Le trigger suivant s'exécute

5. Dans un trigger sur UPDATE, quelles variables sont disponibles ?

☐ A) Seulement NEW
☐ B) Seulement OLD

 ☐ C) OLD et NEW

☐ D) Ni OLD ni NEW

6. Quel est l'ordre d'exécution des triggers ?

☐ A) AFTER → Opération → BEFORE

 ☐ B) BEFORE → Opération → AFTER

☐ C) L'ordre est aléatoire
☐ D) Ils s'exécutent en parallèle

7. Comment créer un trigger sur INSERT et UPDATE ?

☐ A) C'est impossible
☐ B) BEFORE INSERT AND UPDATE

 ☐ C) BEFORE INSERT OR UPDATE

☐ D) BEFORE INSERT, UPDATE

8. Quelle variable indique l'événement déclencheur ?

☐ A) TRIGGER_EVENT

 ☐ B) TG_OP

☐ C) EVENT_TYPE
☐ D) TG_ACTION

9. Dans un trigger AFTER DELETE, quelle est la valeur de NEW ?

☐ A) La ligne supprimée

 ☐ B) NULL

☐ C) Une ligne vide
☐ D) Identique à OLD

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 4/9

10. Quelle clause filtre le déclenchement d'un trigger ?

☐ A) WHERE

1. ☐ B) WHEN

☐ C) FILTER
☐ D) HAVING

CREATE OR REPLACE FUNCTION check_montant_positive()
RETURNS TRIGGER AS $$
BEGIN
 RAISE NOTICE 'Trigger exécuté';
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER trg_check_montant
BEFORE INSERT ON paiement
FOR EACH ROW
WHEN (NEW.montant < 0)
EXECUTE FUNCTION check_montant_positive();

CETTE SYNTAXE N’A PAS ETE DISCUTE AU COURS POUR SIMPLIFIER

11. Que fait RAISE EXCEPTION dans un trigger ?

☐ A) Affiche un message d'information

 ☐ B) Annule l'opération avec une erreur

☐ C) Passe au trigger suivant
☐ D) Termine la transaction

12. Que doit retourner un trigger BEFORE DELETE pour autoriser la suppression ?

☐ A) NEW

 ☐ B) OLD

☐ C) TRUE
☐ D) 1

13. Quelle est la différence entre FOR EACH ROW et FOR EACH STATEMENT ?

 ☐ A) ROW s'exécute une fois par ligne, STATEMENT une fois par requête

☐ B) STATEMENT est plus rapide
☐ C) ROW ne permet pas d'accéder à NEW
☐ D) Il n'y a pas de différence

14. Dans un trigger BEFORE INSERT, peut-on modifier NEW.montant ?

☐ A) Non, NEW est en lecture seule

 ☐ B) Oui, et la modification sera enregistrée

☐ C) Oui, mais la modification sera ignorée
☐ D) Seulement avec AFTER INSERT

15. Comment désactiver temporairement un trigger ?

☐ A) DROP TRIGGER ... TEMPORARY
☐ B) ALTER TRIGGER ... DISABLE

 ☐ C) ALTER TABLE ... DISABLE TRIGGER ... A RETENIR

☐ D) SET TRIGGER = OFF

16. Que représente OLD dans un trigger UPDATE ?

☐ A) La nouvelle valeur de la ligne

 ☐ B) L'ancienne valeur de la ligne avant modification

☐ C) La valeur par défaut
☐ D) La première ligne de la table

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 5/9

17. Peut-on appeler une fonction depuis un trigger ?

☐ A) Non, c'est interdit

 ☐ B) Oui, avec SELECT ou PERFORM

☐ C) Seulement les fonctions système
☐ D) Seulement dans AFTER

18. Que fait RAISE NOTICE ?

☐ A) Annule l'opération

 ☐ B) Affiche un message sans interrompre

☐ C) Enregistre dans une table de log
☐ D) Envoie un email

19. Quel type doit retourner une fonction trigger ?

☐ A) INTEGER
☐ B) BOOLEAN

 ☐ C) TRIGGER

☐ D) VOID

20. Dans quel cas utilise-t-on principalement un trigger AFTER ?

☐ A) Pour valider les données
☐ B) Pour modifier les données avant insertion

 ☐ C) Pour des actions de cascade ou journalisation

☐ D) Pour bloquer une opération

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 6/9

Application QuickFood - Livraison de repas

Exercice 1 — BEFORE INSERT : Valider une commande

Ce trigger vérifie que le montant ≥ 500 DA et que le livreur est disponible.

CREATE OR REPLACE FUNCTION fn_valider_commande()

RETURNS TRIGGER AS $$
DECLARE
 v_disponible BOOLEAN;
BEGIN
 -- Vérifier le montant minimum (500 DA)
 IF NEW.montant < 500 THEN
 RAISE EXCEPTION 'Montant minimum : 500 DA';
 END IF;

 -- Récupérer la disponibilité du livreur
 SELECT disponible INTO v_disponible
 FROM Livreur
 WHERE id_livreur = NEW.id_livreur;

 -- Vérifier que le livreur est disponible
 IF NOT v_disponible THEN
 RAISE EXCEPTION 'Ce livreur n''est pas disponible';
 END IF;

 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER tg_valider_commande
BEFORE INSERT ON Commande
FOR EACH ROW
EXECUTE FUNCTION fn_valider_commande();

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 7/9

Exercice 2 — AFTER INSERT : Mettre à jour après une commande

Ce trigger incrémente nb_commandes du client, met à jour son statut, et rend le livreur indisponible.

CREATE OR REPLACE FUNCTION fn_apres_commande()

RETURNS TRIGGER AS $$
DECLARE
 v_nb INTEGER;
BEGIN
 -- Incrémenter nb_commandes du client
 UPDATE Client
 SET nb_commandes = nb_commandes + 1
 WHERE id_client = NEW.id_client
 RETURNING nb_commandes INTO v_nb;

 -- Mettre à jour le statut selon le nombre de commandes
 IF v_nb >= 20 THEN
 UPDATE Client SET statut = 'VIP'
 WHERE id_client = NEW.id_client;
 ELSIF v_nb >= 5 THEN
 UPDATE Client SET statut = 'REGULIER'
 WHERE id_client = NEW.id_client;
 END IF;

 -- Rendre le livreur indisponible
 UPDATE Livreur
 SET disponible = FALSE
 WHERE id_livreur = NEW.id_livreur;

 /* CONVENTION : Dans un trigger AFTER, RETURN NEW/OLD est ignoré
 car l'opération a déjà été exécutée. On retourne quand même NEW
 par bonne pratique pour la lisibilité et la réutilisabilité. */
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER tg_apres_commande
AFTER INSERT ON Commande
FOR EACH ROW
EXECUTE FUNCTION fn_apres_commande();

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 8/9

Exercice 3 — BEFORE UPDATE : Gérer la livraison

Quand le statut passe à 'LIVREE' : incrémenter nb_livraisons, remettre le livreur disponible, et recalculer sa
note moyenne.

CREATE OR REPLACE FUNCTION fn_gerer_livraison()

RETURNS TRIGGER AS $$
DECLARE
 v_moyenne DECIMAL(3,2);
BEGIN
 -- Traiter seulement si statut passe à 'LIVREE'
 IF NEW.statut = 'LIVREE'
 AND OLD.statut <> 'LIVREE' THEN
 -- Mettre à jour le livreur
 UPDATE Livreur
 SET nb_livraisons = nb_livraisons + 1,
 disponible = TRUE
 WHERE id_livreur = NEW.id_livreur;

 -- Si une note est donnée, recalculer la moyenne
 IF NEW.note_client IS NOT NULL THEN
 SELECT AVG(note_client) INTO v_moyenne
 FROM Commande
 WHERE id_livreur = NEW.id_livreur
 AND note_client IS NOT NULL;
 UPDATE Livreur
 SET note_moyenne = v_moyenne
 WHERE id_livreur = NEW.id_livreur;
 END IF;
 END IF;

 -- RETURN NEW car trigger BEFORE : les modifications seront appliquées
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER tg_gerer_livraison
BEFORE UPDATE ON Commande
FOR EACH ROW
EXECUTE FUNCTION fn_gerer_livraison();

M1 IA/RSD — BDD — Évaluation 3 : Synthèse sur les Triggers

Page 9/9

Exercice 4 — BEFORE DELETE : Protéger les clients VIP

Ce trigger empêche la suppression d'un client ayant le statut 'VIP'.

CREATE OR REPLACE FUNCTION fn_proteger_vip()

RETURNS TRIGGER AS $$
BEGIN
 -- Vérifier si le client est VIP
 IF OLD.statut = 'VIP' THEN
 RAISE EXCEPTION 'Impossible de supprimer un client VIP';
 END IF;

 -- Autoriser la suppression
 RETURN OLD;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER tg_proteger_vip
BEFORE DELETE ON Client
FOR EACH ROW
EXECUTE FUNCTION fn_proteger_vip();

Les mots surlignés en jaune sont les réponses à compléter.

