
Chapter 2 — Advanced SQL
Declarative

Mr. Laïdi FOUGHALI
l.foughali@univ-skikda.dz

(Course materials ⇒ al-moualime.com)

University of Skikda — Department of Computer Science

1st Year Master RSD/AI
Advanced Databases (ADB)

Octobre 5, 2025
Version 1.0 (Initial) — 2025-10-25 à 07:55:49

© 2025 Mr. Laïdi FOUGHALI — Creative Commons License — BY-NC-SA 4.0 International

mailto:l.foughali@univ-skikda.dz
https://al-moualime.com/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Plan

1 Introduction

2 Formatting

3 Joins

4 Subqueries

5 Aggregation

6 Views

7 Conclusion

8 Statistics
© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 Pages : 34

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Introduction References

Introduction
The fundamental SQL commands (DDL and DML) were reviewed in
Chapter 1 of the course and practiced in Lab 1. They cover the basic
operations of a relational DBMS, here PostgreSQL.
Objective of this chapter : go beyond declarative SQL to explore the
advanced and procedural mechanisms of the standardized language
(standard SQL/PSM — Persistent Stored Modules).
Focus areas :

Complex queries : multiple joins, correlated subqueries, views,
aggregations, and analytic functions.
Procedural programming : stored procedures, functions, variables,
and control structures.
Automation and robustness : triggers, transactions, and error
handling.

Goal
Master a complete SQL, both declarative and procedural, to develop reliable
processes compliant with international standards.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 1 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Introduction References

References

SQL Standard (ISO/IEC 9075 :2023) : Information technology —
Database languages — SQL https://www.iso.org/standard/76583.html
PostgreSQL (official documentation) :
https://www.postgresql.org/docs/
Course bibliography : established according to the official Master 1
RSD/AI program ; it constitutes the theoretical and pedagogical basis of
this chapter.

Important
The practical examples rely on PostgreSQL, an open-source DBMS
compliant with the SQL standard (ISO/IEC 9075) and suitable for
academic contexts.
Other DBMSs (Oracle, SQL Server, MySQL) are cited to highlight
non-standard deviations or implementation specifics.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 2 / 32

https://www.iso.org/standard/76583.html
https://www.postgresql.org/docs/

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Sorting Limiting Pagination

ORDER BY Clause
The ORDER BY clause sorts the result set by one or more columns. According to
the SQL standard, sorting occurs at the end of logical processing, after
WHERE, GROUP BY, and HAVING.

-- Alphabetical sort (ascending by default)
SELECT name , salary FROM Employees
ORDER BY name ;

-- Descending by salary
SELECT name , salary FROM Employees
ORDER BY salary DESC ;

-- Sort by column ordinal (1 = name , 2 = salary)
SELECT name , salary FROM Employees
ORDER BY 2 DESC , 1 ASC;

The standard allows either the column name or its ordinal position.
Ascending (ASC) is implicit ; descending (DESC) must be explicit.
Using ordinals can harm readability.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 3 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Sorting Limiting Pagination

FETCH FIRST / LIMIT Clause
To restrict the number of returned rows, SQL :2008 introduced FETCH FIRST
n ROWS ONLY. PostgreSQL implements this standard syntax while keeping the
historical LIMIT (non-standard extension).

-- Standard syntax (SQL:2008)
SELECT name , salary
FROM Employees
ORDER BY salary DESC
FETCH FIRST 5 ROWS ONLY;

-- PostgreSQL equivalent (non - standard extension)
SELECT name , salary
FROM Employees
ORDER BY salary DESC
LIMIT 5;

PostgreSQL supports both FETCH FIRST (standard) and LIMIT
(extension).
FETCH FIRST is not universally available across DBMSs.
Recommendation : prefer the standard form for portability.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 4 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Sorting Limiting Pagination

OFFSET / FETCH Clause
For paged results, SQL :2008 introduced the combination OFFSET + FETCH
FIRST. PostgreSQL provides a standards-compliant implementation, while
also supporting the historical LIMIT ... OFFSET ... variant for backward
compatibility.

-- Standard pagination (page 2: rows 6-10)
SELECT name , salary FROM Employees
ORDER BY salary DESC
OFFSET 5 ROWS
FETCH FIRST 5 ROWS ONLY;

-- PostgreSQL variant (non - standard extension , equivalent)
SELECT name , salary FROM Employees
ORDER BY salary DESC
LIMIT 5 OFFSET 5;

OFFSET sets the initial displacement.
FETCH FIRST specifies the maximum row count after the offset.
PostgreSQL follows the SQL :2008 standard semantics.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 5 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Why Inner Outer Self Practices

Why use joins ?

Combining tables without an association condition yields a Cartesian product :
each row of the first table is paired with every row of the second.

-- Cartesian product: 10 employees × 5 departments → 50 rows
SELECT e.name , d. name
FROM Employees e, Departments d;

This result is rarely useful. To establish logical correspondence between tables,
use a join.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 6 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Why Inner Outer Self Practices

Inner join (INNER JOIN)

An inner join (INNER JOIN) returns only rows where the join condition is
satisfied on both sides.

SELECT e.name , d. name
FROM Employees e
JOIN Departments d ON e. dep_id = d. dep_id ;

The keyword INNER is optional. An inner join corresponds to the logical
intersection of matching rows.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 7 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Why Inner Outer Self Practices

Outer joins (OUTER JOIN)

An outer join also keeps rows that do not find a match on the other side,
yielding a complete result.

-- LEFT JOIN: all employees , even without a department
SELECT e.name , d. name
FROM Employees e
LEFT JOIN Departments d ON e. dep_id = d. dep_id ;

-- RIGHT JOIN: all departments , even without employees
SELECT e.name , d. name
FROM Employees e
RIGHT JOIN Departments d ON e. dep_id = d. dep_id ;

-- FULL OUTER JOIN: all rows from both sides
SELECT e.name , d. name
FROM Employees e
FULL JOIN Departments d ON e. dep_id = d. dep_id ;

These forms (LEFT, RIGHT, FULL) are part of SQL-92 and are fully supported
by PostgreSQL.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 8 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Why Inner Outer Self Practices

Self joins (SELF JOIN)

A self join relates a table to itself, useful for hierarchical or dependency
relations within one table.

SELECT e1. name AS employee , e2. name AS manager
FROM Employees e1
JOIN Employees e2 ON e1. manager_id = e2. emp_id ;

Aliases (e1, e2) are necessary to distinguish the two instances.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 9 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Why Inner Outer Self Practices

Best practices and common mistakes

Avoid patterns that harm readability and portability. Prefer standard-compliant,
maintainable SQL.

-- Obsolete practice (SQL -89) : implicit join via commas
SELECT e.name , d. name
FROM Employees e, Departments d
WHERE e. dep_id = d. dep_id ;

-- Good practice: explicit join (SQL -92)
SELECT e.name , d. name
FROM Employees e
JOIN Departments d ON e. dep_id = d. dep_id ;

Prefer JOIN ... ON (SQL-92) over implicit comma joins (older SQL-89).
Avoid NATURAL JOIN except in tightly controlled schemas.
Use USING(...) for simple keys ; ON(...) for composite keys.
Always use clear table aliases.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 10 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Definition and purpose
A subquery (nested query) is a query inside another query. It helps decompose
complex logic into smaller steps.

-- Example: employees in the 'IT ' department
SELECT name
FROM Employees
WHERE dep_id = (

SELECT id
FROM Departments
WHERE name = 'IT '

);

Use case : improve readability and maintainability.
Principle : the subquery runs first ; its result feeds the outer query.
Result types : single value, single row, or full table.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 11 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Where subqueries can appear
Subqueries can appear in WHERE, FROM, SELECT, or HAVING.

-- In WHERE: filter by a computed result
SELECT name
FROM Employees
WHERE dep_id = (SELECT id FROM Departments WHERE name = 'IT ');

-- In FROM: create a derived table
SELECT d.name , s. avg_salary
FROM Departments d
JOIN (SELECT dep_id , AVG(salary) AS avg_salary

FROM Employees GROUP BY dep_id) AS s
ON d.id = s. dep_id ;

WHERE : conditional filtering (most common).
FROM : local virtual table.
SELECT : computed value per row.
HAVING : filtering over aggregates.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 12 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Examples by position
Examples of the main subquery positions :

-- Subquery in SELECT: global average
SELECT name ,

(SELECT AVG(salary) FROM Employees) AS global_avg
FROM Employees ;

-- Subquery in HAVING: compare an aggregate
SELECT dep_id , AVG(salary)
FROM Employees
GROUP BY dep_id
HAVING AVG(salary) > (

SELECT AVG(salary) FROM Employees
);

Subqueries may yield a scalar, a row, or a table.
They often improve clarity and reduce deeply nested joins.
Consider equivalent rewrites with JOIN for performance.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 13 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Multi-value subqueries : IN, ANY, ALL
For subqueries returning multiple values, use IN, ANY, and ALL.

-- Employees belonging to any 'North ' region department
SELECT name
FROM Employees
WHERE dep_id IN (

SELECT id FROM Departments WHERE region = 'North '
);

-- Salary greater than all salaries in department 10
SELECT name
FROM Employees
WHERE salary > ALL (

SELECT salary FROM Employees WHERE dep_id = 10
);

IN : membership in a set.
ANY : condition true for at least one value.
ALL : condition true for every value.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 14 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Correlated subqueries
A correlated subquery depends on values from the outer query.

-- Employees whose salary exceeds their department average
SELECT e.name , e. salary
FROM Employees e
WHERE e. salary > (

SELECT AVG(salary)
FROM Employees
WHERE dep_id = e. dep_id

);

Executed once per outer row (expressive but often expensive).
Often replaceable by an equivalent join.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 15 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Subqueries in FROM (derived tables)
A derived table is a subquery placed in FROM and treated as a local temporary
table.

-- Average salary by department
SELECT d.name , s. avg_salary
FROM Departments d
JOIN (

SELECT dep_id , AVG(salary) AS avg_salary
FROM Employees
GROUP BY dep_id

) AS s ON d.id = s. dep_id ;

Creates a temporary virtual table.
An alias after the closing parenthesis is required.
Not reusable elsewhere (unlike CTEs).

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 16 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Positions Examples IN / ANY / ALL Correlated FROM CTE

Named subqueries WITH (CTE)
A CTE (Common Table Expression) is a named subquery defined with WITH.
It improves readability and can be reused multiple times within the same query.

-- Average salary by department
WITH Averages AS (

SELECT dep_id , AVG(salary) AS avg_salary
FROM Employees
GROUP BY dep_id

)
SELECT e.name , e.salary , a. avg_salary
FROM Employees e
JOIN Averages a ON e. dep_id = a. dep_id ;

Readable : structures the query into logical blocks.
Reusable : in several parts of the same query.
Standard SQL — supported by PostgreSQL and MySQL ≥ 8.0.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 17 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Concept GROUP BY HAVING COUNT Combining Windows

Aggregation concept
An aggregate function combines multiple rows into a single summary value :
sum, average, maximum, etc. This is a cornerstone of relational analysis.

-- Example: average salary of all employees
SELECT AVG(salary) AS avg_salary
FROM Employees ;

Main functions : COUNT, SUM, AVG, MIN, MAX.
NULL values are ignored by aggregates (standard behavior) — PostgreSQL
and MySQL conform.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 18 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Concept GROUP BY HAVING COUNT Combining Windows

Grouping rows (GROUP BY)
The GROUP BY clause applies aggregate functions on groups of rows sharing the
same value in one or more columns.

-- Average salary by department
SELECT dep_id , AVG(salary) AS avg_salary
FROM Employees
GROUP BY dep_id
ORDER BY avg_salary DESC
FETCH FIRST 3 ROWS ONLY; -- Top 3 departments (standard SQL:2008

supported by PostgreSQL)

Each group produces one output row.
Only grouped or aggregated columns may appear in SELECT.
PostgreSQL enforces this SQL standard rule strictly (MySQL relaxed it
before v5.7).

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 19 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Concept GROUP BY HAVING COUNT Combining Windows

Filtering groups (HAVING)
HAVING filters after aggregation, whereas WHERE filters before aggregation.

-- Departments with average salary > 4000
SELECT dep_id , AVG(salary) AS avg_salary
FROM Employees
GROUP BY dep_id
HAVING AVG(salary) > 4000
ORDER BY avg_salary DESC ;

WHERE → filters source rows.
HAVING → filters groups after aggregation.
PostgreSQL complies with the SQL standard, including nested aggregates.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 20 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Concept GROUP BY HAVING COUNT Combining Windows

Accurate counts (COUNT, DISTINCT)
COUNT counts rows or distinct values.

-- Total number of employees
SELECT COUNT (*) AS total_count FROM Employees ;

-- Number of distinct departments
SELECT COUNT (DISTINCT dep_id) AS dept_count FROM Employees ;

COUNT(*) : counts all rows, including those with NULLs.
COUNT(col) : ignores NULLs.
COUNT(DISTINCT col1, col2, ...) : unique tuples across multiple
columns (standard SQL ; supported by PostgreSQL and MySQL).

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 21 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Concept GROUP BY HAVING COUNT Combining Windows

Combining clauses
These clauses can be combined to build complete analytical queries.

-- Top 3 departments with avg salary > 4000
SELECT dep_id , AVG(salary) AS avg_salary
FROM Employees
GROUP BY dep_id
HAVING AVG(salary) > 4000
ORDER BY avg_salary DESC
FETCH FIRST 3 ROWS ONLY; -- Standard SQL:2008 (supported by

PostgreSQL)

Logical evaluation order : FROM → WHERE → GROUP BY → HAVING →
SELECT → DISTINCT → ORDER BY → OFFSET/FETCH.
PostgreSQL adheres to the ISO SQL standard ordering.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 22 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Concept GROUP BY HAVING COUNT Combining Windows

Analytic functions (windows)
Analytic functions (SQL :2003) extend classical aggregates : they compute
values over dynamic windows of rows without collapsing them.

-- Department average per row , without grouping rows
SELECT dep_id , name , salary ,

AVG(salary) OVER (PARTITION BY dep_id) AS dep_avg
FROM Employees
ORDER BY dep_id , salary DESC
FETCH FIRST 10 ROWS ONLY;

OVER(...) defines the analysis window.
PARTITION BY groups logically without merging rows.
PostgreSQL implements the main features from SQL :2003 (windows).
MySQL supports them since version 8.0 (2018).

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 23 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Updatability Usage

Definition and creation
A view is a virtual table defined from a query. It does not store data ; it
preserves the query’s structure and logic.

-- View listing employees with their department
CREATE VIEW EmployeesDept AS
SELECT e.name , e.salary , d. name AS department
FROM Employees e
JOIN Departments d ON e. dep_id = d. dep_id ;

-- Use a view like a table
SELECT * FROM EmployeesDept ;

CREATE VIEW creates a reusable logical table.
ALTER VIEW modifies it ; DROP VIEW removes it.
PostgreSQL and the SQL standard share the same basic syntax.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 24 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Updatability Usage

Updatable and non-updatable views
A view can be updatable if the DBMS can determine the target base table(s)
for modifications ; otherwise it is read-only.
-- Updatable view: simple projection on a single table
CREATE VIEW EmployeesSimple AS
SELECT emp_id , name , salary FROM Employees ;

UPDATE EmployeesSimple SET salary = salary * 1.05
WHERE emp_id = 10; -- valid

-- Non - updatable view: join → ambiguity
CREATE VIEW EmployeesDept AS
SELECT e.name , d. name AS department FROM Employees e
JOIN Departments d ON e. dep_id = d. dep_id ;

UPDATE EmployeesDept SET department = 'HR '; -- rejected

Updatable : single table, no aggregates, no GROUP BY.
Non-updatable : joins, aggregates, functions, DISTINCT, etc.
PostgreSQL enforces SQL-standard rules.
PostgreSQL can make certain read-only views writable via INSTEAD OF
TRIGGER (DBMS-specific, non-standard).

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 25 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Definition Updatability Usage

Usage and best practices
Views are essential for security, simplification, and abstraction.

-- Example: restrict access to sensitive data
CREATE VIEW EmployeesPublic AS
SELECT name , role , dep_id
FROM Employees ;

GRANT SELECT ON EmployeesPublic TO interns ;

Security : restrict visible columns or rows per role.
Abstraction : hide join or calculation complexity.
Simplification : factor frequent queries.
Performance : possible with materialized views (non-standard ; available
in PostgreSQL, Oracle). SQL Server offers indexed views (similar goal).

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 26 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Conclusion

Conclusion (Declarative SQL)

Standard compliance : Systematically adopt normalized SQL forms
(JOIN ... ON, GROUP BY, FETCH FIRST, OVER(...)) to ensure
portability and conformance to ISO/IEC 9075. This discipline yields
durable, DBMS-agnostic queries.

Power of the declarative paradigm : Joins, subqueries, CTEs,
aggregates, and analytic functions enable complex analytical workloads
without procedural programming.

Structure and security : Views provide abstraction and protection,
ensuring readability, reuse, and consistency.

Next section
The next section presents concrete case studies demonstrating the power of
declarative SQL for advanced statistical analyses. All queries will be
expressed in standard SQL, without procedural programming.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 27 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Basic statistics Median Rankings Running totals Z-score

Global and per-group statistics

-- Global: mean , variance , and standard deviation (standard SQL:2003
)

-- VAR_POP and STDDEV_POP use N (population)
-- VAR_SAMP uses N -1 (sample)

SELECT
AVG(salary) AS mean_value ,
VAR_POP (salary) AS variance ,
STDDEV_POP (salary) AS std_dev

FROM Employees ;

-- By department: grouped mean and standard deviation
SELECT dep_id ,

AVG(salary) AS mean_value ,
STDDEV_POP (salary) AS std_dev

FROM Employees
GROUP BY dep_id
ORDER BY mean_value DESC ;

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 28 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Basic statistics Median Rankings Running totals Z-score

Median and percentiles (ordered-set)

-- Quartiles (Q1 , median , Q3) from the salary distribution
-- SQL:2003 (ORDERED - SET aggregates)
SELECT dep_id ,

PERCENTILE_CONT (0.25) WITHIN GROUP (ORDER BY salary) AS q1 ,
-- first quartile (25%)

PERCENTILE_CONT (0.50) WITHIN GROUP (ORDER BY salary) AS
median , -- median (50%)

PERCENTILE_CONT (0.75) WITHIN GROUP (ORDER BY salary) AS q3
-- third quartile (75%)

FROM Employees
GROUP BY dep_id
ORDER BY dep_id ;

The PERCENTILE_CONT function is an ordered aggregate. It computes the value
below which a given percentage of observations falls, after sorting the data with
ORDER BY.
If the computed position does not match an exact existing value, PostgreSQL per-
forms continuous interpolation between neighboring values to obtain a smooth
estimate.
Note that there is another variant : PERCENTILE_DISC.

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 29 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Basic statistics Median Rankings Running totals Z-score

Rankings and Top-N

-- Rank departments by average salary
-- RANK () OVER (...) assigns ranks with ties (different from

ROW_NUMBER).
WITH DepAvg AS (

SELECT dep_id , AVG(salary) AS mean_value
FROM Employees
GROUP BY dep_id

)
SELECT dep_id , mean_value ,

RANK () OVER (ORDER BY mean_value DESC) AS rank_no
FROM DepAvg
ORDER BY rank_no ;

-- Top 5 per department: ROW_NUMBER () + filter rk <= 5
SELECT *
FROM (

SELECT e.dep_id , e.name , e.salary ,
ROW_NUMBER () OVER (

PARTITION BY e. dep_id
ORDER BY e. salary DESC

) AS rk
FROM Employees e

) t
WHERE rk <= 5
ORDER BY dep_id , rk;

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 30 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Basic statistics Median Rankings Running totals Z-score

Running totals and shares

-- Cumulative salary per department by salary order
SELECT dep_id , name , salary ,

SUM(salary) OVER (
PARTITION BY dep_id
ORDER BY salary
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

) AS dept_cumsum
FROM Employees
ORDER BY dep_id , salary ;

-- Relative share of a salary within its department total
SELECT dep_id , name , salary ,

salary::NUMERIC
/ NULLIF (SUM(salary) OVER (PARTITION BY dep_id), 0) AS

dept_share
FROM Employees
ORDER BY dep_id , salary DESC ;

-- Relative position (0..1) : CUME_DIST () and PERCENT_RANK ()
SELECT name , salary ,

CUME_DIST () OVER (ORDER BY salary) AS cume_dist ,
PERCENT_RANK () OVER (ORDER BY salary) AS percent_rank

FROM Employees
ORDER BY salary ;

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 31 / 32

Title Page Plan Introduction Formatting Joins Subqueries Aggregation Views Conclusion Statistics

Basic statistics Median Rankings Running totals Z-score

Normalization and outliers (z-score)

-- z- score: (value - dept_mean) / dept_stddev
-- Compares deviations from the mean on different scales .
WITH Stats AS (

SELECT e.*,
AVG(salary) OVER (PARTITION BY dep_id) AS mu ,
STDDEV_POP (salary) OVER (PARTITION BY dep_id) AS sigma

FROM Employees e
)
SELECT dep_id , name , salary ,

(salary - mu) / NULLIF (sigma , 0) AS zscore
FROM Stats
ORDER BY dep_id , zscore DESC ;

-- Outlier detection: |z| > 3 (empirical three - sigma rule)
WITH Stats AS (

SELECT e.*,
AVG(salary) OVER (PARTITION BY dep_id) AS mu ,
STDDEV_POP (salary) OVER (PARTITION BY dep_id) AS sigma

FROM Employees e
)
SELECT dep_id , name , salary ,

(salary - mu) / NULLIF (sigma , 0) AS zscore
FROM Stats
WHERE ABS ((salary - mu) / NULLIF (sigma , 0)) > 3
ORDER BY dep_id , zscore DESC ;

© 2025 M. Laïdi FOUGHALI BDA — Chapter 2: Advanced SQL Octobre 5, 2025 32 / 32

	Title Page
	Plan
	Introduction
	Introduction
	References

	Formatting
	Sorting
	Limiting
	Pagination

	Joins
	Why
	Inner
	Outer
	Self
	Practices

	Subqueries
	Definition
	Positions
	Examples
	IN / ANY / ALL
	Correlated
	FROM
	CTE

	Aggregation
	Concept
	GROUP BY
	HAVING
	COUNT
	Combining
	Windows

	Views
	Definition
	Updatability
	Usage

	Conclusion
	Conclusion (Declarative SQL)

	Statistics
	Basic statistics
	Median
	Rankings
	Running totals
	Z-score

